Journal of Organometallic Chemistry, 124 (1977) 279–292 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

TITAN-STICKSTOFF-VERBINDUNGEN

XXV *. CYCLISCHE TITAN-SILYLAMIDE

H. BÜRGER * und K. WIEGEL

Fachbereich 9, Anorganische Chemie, Gesamthochschule, 5600 Wuppertal, Gewerbeschulstrasse 34 und Institut für Anorganische Chemie der Technischen Universität, 3300 Braunschweig, Pockelstrasse 4 (B.R.D.)

(Eingegangen den 24. Juni 1976)

Summary

Monocyclic silyl-substituted titanium amides of the general formula Z_2TiL_2 where L_2 is a bidentate ligand $-NMeSiMe_2-Y-SiMe_2NMe-$, (Y = -, NMe, O, CH₂, Z = NMe₂, NEt₂, F, Cl, Br) have been prepared either by the reaction of the dilithiated ligand Li_2L_2 with the appropriate halide Z_2TiHal_2 or by the cleavage of the spiro compound $Ti(L_2)_2$ with TiZ_4 . With the exception of the difluoride L_2TiF_2 all compounds are monomeric and of sufficient thermal stability to be distilled or sublimed in vacuo. The difluoride is associated via TiFTi bridges. All compounds have been characterized by ¹H (and ¹⁹F) NMR spectra and by IR and Raman spectra. Most of the skeletal stretching vibrations have been assigned.

Zusammenfassung

Monocyclische silylsubstituierte Titanamide der allgemeinen Zusammensetzung $Z_2 TiL_2$ ($L_2 = zweizähniger Ligand --NMeSiMe_2--Y-SiMe_2NMe-, Y = -,$ NMe, O und CH₂, Z = NMe₂, NEt₂, F, Cl, Br) wurden entweder durch Reaktion des dilithiierten Liganden Li₂L₂ mit dem entsprechenden Halogenid Z₂TiHal₂ oder durch Spaltung der Spiro-Verbindung Ti(L₂)₂ mit TiZ₄ dargestellt. Mit Ausnahme des Difluorids L₂TiF₂ sind alle Verbindungen monomer und thermisch so beständig, dass sie im Vakuum destilliert oder sublimiert werden können. Das Difluorid ist über TiFTi-Brücken assoziiert. Alle Verbindungen wurden durch ¹H- (und ¹⁹F-)-NMR-Spektren sowie durch IR/Raman-Spektren charakterisiert. Die meisten Skelett-Valenzschwingungen konnten zugeordnet werden.

^{*} XXIV. Mitteilung siehe Ref. 1.

1. Einführung

Titan(IV) der KZ 4 lässt sich durch geeignete Stickstoff-Liganden wie NR_2 oder NRR'-Gruppen koordinationschemisch absättigen. Chelat-Liganden $-NR\sim\sim NR-$ (L₂) erhöhen dabei im Vergleich zu terminalen NRR'-Gruppen die thermische Beständigkeit gegenüber Ligandentauschreaktionen.

Vergleichende Untersuchungen zeigten dabei, dass Si-haltige Liganden L₂ wie $-NMeSiMe_2SiMe_2NMe-$ oder $-NMeSiMe_2-Y-SiMe_2NMe-$ den α,ω -Dialkylaminoalkanen, z.B. $-NRCH_2CH_2CH_2NR-$ [2], deutlich überlegen sind. Dieses Verhalten wird durch die Eigenschaften zahlreicher SiN-haltiger Heterocyclen belegt, die in den letzten Jahren dargestellt werden konnten [3-7].

Setzt man nach Gl. 1 dilithiierte Chelat-Liganden —NR~~~NR— mit Elementtetrahalogeniden MHal₄ um, so bilden sich in glatter Reaktion Spirane A, die

$$2 \text{ LiNR} \sim \text{NRLi} + \text{MHal}_{4} \rightarrow 4 \text{ LiHal} + \begin{cases} R & R \\ N & N \\ R & R \\ R & R \\ (A) \end{cases}$$
(1)

durch Kristallisation oder Sublimation isoliert werden können. Über entsprechende Ti-Verbindungen: A1: M = Ti, L₂ = NMeSiMe₂SiMe₂NMe [5]; A2: M = Ti, L₂ = NMeSiMe₂NMeSiMe₂NMe [3]; A3: M = Ti, L₂ = NMeSiMe₂OSiMe₂NMe [3]; und A4: M = Ti, L₂ = NMeSiMe₂CH₂SiMe₂NMe [3] haben wir bereits berichtet. Monocyclische Verbindungen (B) bilden sich dagegen nach Gl. 2, wenn ein difunktionelles Halogenid R_nMHal₂ eingesetzt wird.

LINR ~~ NRLi +
$$R_0$$
 MHal₂ ~ 2 LiHal + $\begin{cases} N \\ N \\ R \end{cases}$ (B)

Die folgende Arbeit beschäftigt sich mit der Synthese und den Eigenschaften von Ti-Verbindungen vom Typ B, in denen R entweder Halogen-Atome (F, Cl, Br) oder ebenfalls reaktionsfähige Dialkylamido-Gruppen NMe₂ oder NEt₂ sind. Diese Verbindungen stellen potentielle quasi-bifunktionelle Ti-Derivate dar. Ihre Synthese wird mit der Zielsetzung unternommen, Modellverbindungen des tetracovalenten Ti vom Typ B mit je zwei leicht substituierbaren und einem zweizähnigen, möglichst inerten, gegen Ligandentauschreaktionen widerstandsfähigen Liganden L₂ zugänglich zu machen.

2. Darstellung

Zur Darstellung der im folgenden beschriebenen Verbindungen (I-X) stehen zwei prinzipielle Synthesewege zur Verfügung, nämlich die direkte Synthese, ausgehend vom di-lithiierten Diamin Li_2L_2 [8,9,3,6] und TiHal₄ bzw. den leicht zugänglichen $(R_2N)_2$ TiBr₂-Bausteinen [10] nach Gl. 3a bzw. 3b oder die Spaltung TiHal₄ + $Li_2L_2 \rightarrow L_2$ TiHal₂ + 2 LiHal (3a)

$$(R_2N)_2TiHal_2 + Li_2L_2 \rightarrow L_2Ti(NR_2)_2 + 2 LiHal$$
(3b)

der bereits früher beschriebenen Spirane Ti(L₂)₂ (A1-A4) mit TiHal₄ nach Gl. 4. Ti(L₂)₂ + TiHal₄ \rightarrow 2 L₂TiHal₂ (4)

Die experimentellen Befunde zeigen, dass bei der Darstellung der Chloride und Bromide V-VIII nach Reaktion 3a Ausbeuten von ca. 60% erzielt und die erwünschten Produkte kristallin aus Petroläther in hoher Reinheit gewonnen werden können, während die Dialkylamide I-IV in ähnlichen Ausbeuten auf Grund ihrer guten thermischen Beständigkeit durch Destillation bzw. Sublimation isolierbar sind. Der Fünfring IX wurde wegen der Verfügbarkeit des Spirans A1 nach Gl. 4 dargestellt, doch besteht kaum Zweifel, dass analog zu vielen anderen Fünfringderivaten [11] auch eine Synthese nach Gl. 3a möglich ist. Die Spaltung des Spirans selbst verläuft praktisch quantitativ; da die Ausbeuten an Spiranen A1-A4, bezogen auf den wertvollen Baustein L₂, bei 50-60% liegen, ist der einstufige Syntheseweg nach Gl. 3a der vorteilhaftere. Bei der Synthese von Fluoriden L₂TiF₂ musste damit gerechnet werden, dass wie bei den entsprechenden Dialkylamido-Verbindungen (R₂N)₂TiF₂ [12,13] assoziierte, schwerlösliche Produkte auftreten, die bei einer Reaktion nach Gl. 3a vom LiF nicht abtrennbar sind und ggf. auch unlösliches, unumgesetztes TiF₄ enthalten können.

Das Experiment zeigte, dass wegen der Unlöslichkeit von TiF₄ auch bei mehrstündigem Erhitzen am Rückfluss in Petroläther keine Umsetzung im Sinne von Gl. 3a stattfindet: der unlösliche Anteil wird durch Ti- und F-Analysen als TiF₄ identifiziert, während die Lösung teilweise zersetztes metalliertes Produkt enthält.

Es wurde deshalb TiF₄ nach Gl. 4 mit den Spiranen A2—A4 in Petroläther umgesetzt. Bei Raumtemperatur ist keine Reaktion zu beobachten, erst beim Erhitzen am Rückfluss setzt unter Verfärbung von gelb nach tiefrot eine Reaktion ein.

Die Spirane A2—A4 führen in ihrer Reaktion mit TiF₄ teils zu übereinstimmenden, teils zu unterschiedlichen Resultaten. Mit A2 geht der meiste Teil des TiF₄ in Lösung; aus dem Filtrat lassen sich keine kristallinen Produkte erhalten. Nach Abziehen des Lösungsmittels verbleibt ein orangebrauner Rückstand, der nur 42% des für L₂TiF₂ berechneten Fluors enthält.

A3 führt dagegen zu einer Zunahme an Unlöslichem. Bezogen auf eingesetztes TiF₄ bildet sich in 60% iger Ausbeute (berechnet als L_2 TiF₂) ein hellgelbes, unlösliches Produkt, das nicht weiter gereinigt werden kann und dessen C-, H- und N-Analysen zwar denen eines L₂TiF₂ nahekommen, das aber nur 40% des erforderlichen F enthält.

I

Lediglich aus der Reaktion mit A4 entsteht in 35% Ausbeute ein amorphes. hellgelbes, in Petroläther unlösliches Produkt, das in allen analytischen Daten der gesuchten Verbindung X entspricht und über dessen Eigenschaften weiter unten berichtet wird.

Die experimentellen Befunde führen zu dem Schluss, dass Reaktion 4 mit TiF₄ nicht eindeutig abläuft. Aus dem mit A2 bzw. A3 beobachteten Fluorverlust ist zu folgern, dass sich in einer Konkurrenzreaktion flüchtige SiF-Verbindungen nach Gl. 5b gebildet haben.

$$\rightarrow - \mathbf{T}_{1}^{i}\mathbf{F} + \mathbf{F}_{1}^{i} - \mathbf{N}\mathbf{M}\mathbf{e} - \mathbf{S}_{1}^{i}\mathbf{M}\mathbf{e}_{2} -$$
(5a)

$$-\stackrel{I}{T}_{i} - NMe - SiMe_{2} - + \stackrel{I}{T}_{i} F_{2} \rightarrow -\stackrel{I}{T}_{i} - NMe - \stackrel{I}{T}_{i} F + FSiMe_{2} -$$
(5b)

Der bereitwillige Ablauf solcher SiN-Spaltungsreaktionen wurde bereits früher [12] für die Synthese von Dialkylamido-titanfluoriden, z.B. nach Gl. 6, präparativ verwertet.

$$TiF_4 + Me_3SiNMe_2 \rightarrow Me_2NTiF_3 + Me_3SiF$$
(6)

3. Eigenschaften

Die physikalischen Eigenschaften der Verbindungen I-X sind in Tabelle 1 zusammengestellt. I–IV sind flüssig bzw. schmalzartig (wie bei Silvlaminen häufig [14]) und mit polaren und unpolaren organischen Lösungsmitteln mischbar; X fällt durch seine relative Schwerlöslichkeit aus der Reihe. Die Farbe der Verbindungen I–IX, tief gelb bis rot, ist typisch für nicht assoziierte Titan(IV)-Amide und geht auf $N \rightarrow Ti$ -CT-Übergänge zurück. Damit im Einklang sind I–IX nach Aussage von Molekulargewichtsbestimmungen in Lösung sowie auf Grund ihrer Flüchtigkeit und Löslichkeit monomer. Hierzu im Gegensatz ist X schwerlöslich, von geringerer Farbintensität und nach kryoskopischen Molekulargewichtsbestimmungen an einer 2% ig. Lösung in Benzol stark assoziiert; der mittlere Assoziationsgrad liegt bei 8 (M 2200).

Alle Verbindungen erleiden durch H₂O eine schnelle Hydrolyse; bei Raumtemperatur sind sie unter Feuchtigkeitsausschluss jedoch haltbar.

4. NMR-Spektren

Die ¹H-NMR-Spektren der Verbindungen I-X sind in Tabelle 2 zusammengestellt. Die Spektren sind von erster Ordnung; Fig. 1 zeigt als typisches Beispiel das Spektrum von II. Lage und Intensität der Resonanzlinien bestätigen neben den Analysen Zusammensetzung und Struktur der Verbindungen. Aus den Resonanzlagen der Verbindungen I-IX ist zu erkennen, dass im Vergleich zu den a, w-Diaminen H2L2 deren SiCH3-Signale in L2TiHal2-Verbindungen systematisch zu höherem Feld, dagegen durch Ti(NR₂)₂-Gruppen zu niedrigerem Feld verschoben werden.

Verbindung	M.p. (°C)	B.p. (Subl.P.) ^a (°C/Torr)	Farbe	D ₄ ²⁰	ⁿ²⁰ D
MeN(SiMe2NMe)2Ti(NMe2)7 (I)	50 b	60/10-4	gelb		
MeN(SiMe2NMe)2Ti(NEt2)2 (II)		80/10-4	gelb	0.981	1.5347
O(SiMe2NMe)2Ti(NMe2)2 (III)		35/10-4	gelb	0.998	1.5285
O(SiMe2NMe)2Ti(NEt2)2 (IV)		70/10-4	gelb	0.979	1.5173
MeN(SiMe2NMe)2TiCl2 (V) C	68	58/10 ⁻⁴	orangegelb		
MeN(SiMe2NMe)2TiBr2 (VI) C	72	60/10-4	hellrot		
CH ₂ (SiMe ₂ NMe) ₂ TiBr ₂ (VIII) ^C	65	65/10-4	orange		
(SiMe2NMe)2TiBr2 (1X) C	85	70/10-4	gelborange		
CH ₂ (SiMe ₂ NMe) ₂ TiF ₂ (X) ^c	Zers. bei 140°		gelb		

TABELLE 1
PHYSIKALISCHE EIGENSCHAFTEN DER VERBINDUNGEN I-X

^a V–IX schmelzen bzw. sublimieren unter teilweiser Zersetzung. ^b Schmalzartige Verbindung. ^c V–IX sind gut löslich in Benzol: X ist löslich in Benzol und Toluol und schwerlöslich in Petroläther.

X zeigt im ¹H-NMR-Spektrum drei etwas verbreiterte Singuletts im erwarteten Intensitätsverhältnis, deren Breite in der Reihe SiCH₃, NCH₃, CH₂ zunimmt. Eine ähnliche Signalverbreiterung wurde auch beim im Mittel tetramer assoziierten analogen $(Et_2N)_2TiF_2$ (Ref. 12, Abb. 4) gefunden und auf ein Assoziationsgleichgewicht zurückgeführt.

Im ¹⁹F-NMR-Spektrum treten verschiedene Signale zwischen -225 und +125 ppm mit einer intensitätsmässig hervortretenden Gruppe bei +33 ppm (relativ zu CCl₃F) auf. Dieses Raumtemperatur-Spektrum gleicht, abgesehen von seiner grösseren Zahl erkennbarer Komponenten, wiederum dem bei -20° C registrierten ¹⁹F-Spektrum von (Et₂N)₂TiF₂ (Ref. 12, Abb. 5), für das analog zum (Me₂-

Fig. 1. ¹H-NMR-Spektrum von II.

(Fortsetzung s.S. 287)

Verbindung	r(SiCH ₃)	r(TINCH ₃)	r(Si2NCH3)	τ(TIN(CH ₃) ₂)	r(Tincii2)	r(TINCCII ₃)
N ^{Si-N} Ti(NMe ₂) ₂ (I)	9,58	6,66	7.25	6,63		
N = N = N = N = N = N = N	9.58	6,63	7.20		6.23(Q ^a)	8.63(T ^a)
O ^{Si-N} _Ti(NMe ₂) ₂ (田)	9,63	6.70		6,64		
O< ^{Si−N} Ti(NEt ₂) ₂ (Ⅲ)	9.65	6.70			6,26(Q ^d)	8.69(T ^a)
N <si-n SI-N TICI2 (T)</si-n 	9,88	6,48	7.43			
N<5i-N Si-N TIB ₂ (21)	9.81	6.39	7.46			
OSI-NTIBI2 (VII)	0.90	6.51				
	9,90	6,38	9.72 (= 1(Sl ₂ CH ₂))			
	9.95	6.56				
Si — N _{>TIF2} (X) H^Si — N _{>TIF2} (X)	9.68	6.38	9.26 (≖ r(Si₂CH2))			
^a J(HH) 7 Hz; Lösungsmittel und inn. Sta	undard C ₆ H ₆ (τ 2.	63 ppm)	na na na mangana mpa na mangana na mpa na		and the second	

TI(NMe	12)4 [15]	Ti((NMeS	1Me2)2NMe]2 [3]		*	Н			•	12		Zuordnung
E	Ra	IR	Ra	R	Ra	IR	Ra	IR	Ra	IR	Ra	
					: :	1020vs	•	, ,		1020vs		v _{as} (SiOSi)
		886vs	874mp	881vs 785vs?		788vs7		885vs 782vs7		786vs		Vas(SINSI) V(SINRIDE)
		792vs	790mp	79 5vs	796mp	802vs	800mp	794 vs	800m	7989	807m) Vas(SIC2)
		761.	760w	1605	758vw	7635		7605	762w			
		676m	677s	672m	680m	678w	676w	672w		678w	682m	γ ν _s (SiC ₂)
		661 w	847vw	647w	647 vw	850vw			648vw			
690				590s	587(sh)	693s		607m		6105		Vas(TIN2 rxo)
	532			54.58	538wp	663m	558wp		60.55		60517	Va(TIN2 exo)
		671w		578s	674sp		581 vs	583w	580m		570m	·····
		647s				537s	530w	542w	548vw	533s	532vw) v(icing)
		521 w	616w									Vas(TiNz endo)
	1	:	463vsp	465m	461 vsp	468m	468vs	465w	462s	47.7m	468vs	v _s ('TIN ₂ endo)
					+ + + + + + + + + + + + + + + + + + +				•	:		

-

AUSZUG A	US DEN SCI	HWINGUN	IGSSPEKT	REN DER V	ERBINDU	NGEN V-V	VIII SOWI	E X UND	VON VER	GLEICHSS	SUBSTAN	ZEN	
(Me ₂ N) ₂ - TyBr ₂ [10]	Til(NMeSI CH2]2 [3]	Me2)2-	>		N		NII A	1 1 1 1	NIIV		×		Zuordnung
IR	IR	Ra	R	Ra	R	Ra	멾	Ra	IR	Ra	IR	Ra	
	1050s 978m-w	980m				-			10285	1023vw 988vw	988w	990 w	6(SiCH ₂ Si)
			040	-	- 200		1036vs						ν _{as} (slosi)
	884m	882#	5/98 728s?		6605 72587				74187		73857	136w2	ν _{as} (SiNSi) υ(SiN Ring)
	800va	806s	798vs	788m	7988	784m	800vs	794w	8008		70 7 VB		
	770s	768m	768m				760m	760vw	7709		766s	751 w	} v.,(SlC,)
	680m	678m	683m	680w	687w			706w	688m	w069	68.3m	682m	1
		647w	654m	650w	653m				657m		660w		$\int \nu_{a}(SiC_{7})$
	598w	605w					627vw				62.5m	630 w	
		668w	553s	550m	649s	546m	587m		594m	694w	6115	602m	/v(Ring)
612s	522m						518w	508w	506w				U., (TIN)
	600w												
591 m		467vs	487m	48 58	484w	482s	466w	461s	478vw	472vs		498 vs	ν _e (TIN ₃)
876vs			442sh		391s	383w	394vs	386w	383vs	380m	521s(br)		Vas(Tillal))
308m			436s	436m							•		
			406s		284sb	281m	2815	280vb	2785	274s	483s	460m	ν _a (Tillal2)

TABELLE 4

N)₂TiF₂ [13] auf eine Struktur mit hexakoordiniertem Ti- und F- sowie N-Verbrückung geschlossen wurde.

Eine Struktur für X wird im Anschluss an die folgende Interpretation der Schwingungsspektren vorgeschlagen (vide infra).

5. Schwingungsspektren

Wir haben von allen Verbindungen I–X, soweit wie möglich, IR- und Raman-Spektren aufgenommen. Diese sind vollständig im experimentellen Teil wiedergegeben; die Tabellen 3–5 fassen wichtige, skelett- und strukturspezifische Schwingungen zusammen und stellen sie analogen Schwingungen von Vergleichssubstanzen gegenüber. Die Fig. 2 und 3 geben exemplarisch die IR- und Raman-Spektren von II wieder. Tabelle 3 zeigt, dass $\nu(\text{TiN})$ der exocyclischen TiNR₂-Gruppen den offenkettigen Verbindungen entspricht, während $\nu(\text{TiN}_{Ring})$ wie bei dem Spiran durch Kopplungsabstossung mit den SiN-, SiO- und SiC-Ringschwingungen stark erniedrigt ist. Im Bereich der Ring- und $\nu(\text{TiN}_{Ring})$ -Schwingungen gibt es eine gute Übereinstimmung mit den spirocyclischen Verbindungen; Unklarheit herrscht jedoch über den Gang einer bei 800 ± 100 cm⁻¹ erwarteten und teilweise auch aufgefundenen Streckschwingung des Ringes mit $\nu(\text{SiN})$ -Charakter, da sich in diesem Bereich viele $\nu(\text{SiC})$ - und $\rho(\text{SiCH}_3)$ -Schwingungen häufen.

In allen Fällen, auch bei X, deuten die unverändert auftretenden ligandenspezifischen Schwingungen an, dass die Chelatliganden L_2 intakt vorliegen und nicht verbrückend wirksam sind. Hier sei besonders auf die starke Raman-Linie 475 ± 25 cm⁻¹ hingewiesen.

Strukturrelevante Informationen können nur aus den TiHal-Schwingungen abgeleitet werden. Hier zeigt sich folgendes Bild:

IX		Ti[(NMeSiN	[e ₂) ₂] ₂ [16,5]	Zuordnung
IR	Raman	IR	Raman	
1075vs	1069s 786vs	1088vs	1082s 799s	ν(CN)
773vs		767vs		$\mathcal{V}(SiN_{Ring})$
798vs		796s)
729s	729w		755w	$\nu_{ae}(SiC_2), \rho(CH_3)$
	691w		710vw	
	677m	678vw	670sh	Ì
			655m	$\nu_{s}(SiC_{2})$
			646m)
535w		538m	538m	1
	529m		510s	}D(TIN)
413w	414vs	408w		1
			380vs	10(3131)
379 vs				}p(TiB+)
279m	280vs			1 P(LIDI)

TABELLE 5

AUSZUG AUS DEM SCHWINGUNGSSPEKTRUM VON (IX) SOWIE VON TI[(NMeSiMe2)2]2

^a Ref. 16, 5.

Fig. 2. IR-Spektrum von II. a: 200-500 cm⁻¹, Polyäthylen-Fenster; b: 400-1500 cm⁻¹, KBr-Fenster.

1. Die TiBr-Streckschwingungen sind lagekonstant, sicher identifizierbar und nur mit einer monomeren Struktur vereinbar.

2. V zeigt im v(TiCl)-Bereich, der vom v(TiN/Ring)-Bereich bis zu den Deformationen reicht, kein diagnostisches Verhalten. Auf Grund der Spektren ist im Festzustand durchaus eine schwache Assoziation über TiClTi-Brücken denkbar.

3. Den Raman-Spektren von festem (polymerem) bzw. gasförmigem (monomerem) TiF₄ [17] ist zu entnehmen, dass TiF-Streckschwingungen terminaler Fluoratome im Bereich zwischen 650–800 cm⁻¹ und jene verbrückter Ti-F--Ti-Gruppierungen zwischen 450 und 600 cm⁻¹ auftreten. IR-Spektren von Dialkylamido-titanfluoriden [12] (R₂N)_{4-n}TiF_n zeigen ν (TiF)(terminal) zwischen 640 und 670 cm⁻¹ und ν (TiFTi)(verbrückt) breit bei 500–570 cm⁻¹, letztere meist mit Schwerpunkt bei ca. 500 cm⁻¹. Mit grosser Sicherheit ist die bei 521 cm⁻¹ beobachtete breite IR-Bande von X auf ν (TiFTi)(verbrückt) zurückzuführen.

Fig. 3. Raman-Spektrum von II.

Das Fehlen starker IR-Absorptionen bei ca. 650 cm⁻¹ lässt darauf schliessen, dass terminale Fluoratome in der Molekülstruktur von X höchstens in untergeordnetem Masse vorhanden sind.

Im Einklang mit kryoskopischen Molekulargewichtsbestimmungen muss für X deshalb eine Struktur mit fluorverbrückten Assoziaten, die möglicherweise lösungsmittel-, temperatur- und konzentrationsabhängige Gleichgewichte eingehen, gefolgert werden. Dass der Sechsring an der Verbrückung nicht beteiligt ist, geht sowohl aus den Schwingungsspektren als auch der Lage von τ (NCH₃) im ¹H-NMR-Spektrum hervor: N-Verbrückung führt zu einer Niedrigfeldverschiebung der NCH₃-Signale um ca. 0.5 ppm [12]. Der folgende Strukturvorschlag steht mit allen experimentellen Befunden im Einklang:

Experimenteller Teil

Ausgangssubstanzen

 $(Me_2N)_2TiBr_2$ und $(Et_2N)_2TiBr_2$ wurden nach Literaturvorschriften [10] hergestellt. Die Darstellung von TiF₄ erfolgte durch Umsetzung von TiCl₄ mit reinem Fluorwasserstoff in einer geeigneten kupfernen Versuchsapparatur. Die Si-haltigen Liganden H₂L₂ wurden nach [8,9,18,3] dargestellt; das Spiran (A1) erhielten wir nach [5].

Heptamethyl-6,6-bis(dimethylamido)-2,4-disila-1,3,5-triaza-6-titanacyclohexan (I)

11.3 g (0.055 Mol) MeN(SiMe₂NHMe)₂, gelöst in 140 ml Petroläther (40— 60°C), werden durch Zutropfen von 51.2 g (0.12 Mol) einer 15% igen Lösung von Butyllithium in n-Hexan metalliert. Nach kurzem Erwärmen des Reaktionsgemisches auf ca. 50°C und Erhöhung der Lösungsmittelmenge auf 400 ml tropft man eine Lösung von 16.4 g (0.055 Mol) (Me₂N)₂TiBr₂ in Petroläther langsam bei Raumtemperatur zu. Nach erneutem kurzem Erwärmen wird das gebildete LiBr unter N₂-Atmosphäre abfiltriert und das Lösungsmittel im Vakuum abgezogen. Durch Destillation bei 10⁻⁴ Torr und 60°C Badtemperatur lassen sich 13 g I (70% Ausbeute, bezogen auf (Me₂N)₂TiBr₂) als gelbe Flüssigkeit isolieren. Analysen von I-X s. Tabelle 6. IR (cm⁻¹): 2967s, 2946s, 2897s, 2858vs, 2814s, 2783s, 2767vs, 1468m, 1453s, 1417s, 1250vs, 1157s, 1120vs, 1058vs, 968(sh), 953vs, 881vs, 850vs, 833s, 795vs, 785vs, 760s, 672m, 647w, 590s, 578s, 545s, 465m, 382s, 322s. Raman: 2893sp, 2855sp, 2834m, 2807sp, 2778mp, 2761s, 1470m, 1400w, 1250vsp, 1157vw, 1120mp, 970sp, 796wp, 758vw, 680m, 647vw, 587sh, 574sp, 538wp, 461vsp, 404vw, 382vw, 322vsp, 220s cm⁻¹.

Analog: Heptamethyl-6,6-bis(diäthylamido)-2,4-disila-1,3,5-triaza-6-titanacyclohexan (II). Ausbeute 56%. IR: 2868vs, 2936s, 2903m, 2868vs, 2840s, 2786, 1458m, 1445m, 1414vw, 1375m, 1353m, 1333vw, 1253vs, 1187s, 1153s, 1107vs, 1062vs, 1030w, 1005s, 960vw, 885vs, 848vs, 834vs, 794vs, 782vs, 760s, 672w, 607m, 583w, 542w, 465w, 386s, 321m. Raman: 2965m, 2928w, 2898w, 2869w, 2841w, 2821w, 2785w, 1446m, 1418m-w, 1356m-w, 1312vw, 1265vw, 1186s, 1154w, 1112m-w, 1063m-w, 1030m, 1010s, 903m, 800m-w, 762w, 684m, 648vw, 605m-s, 580m, 548vw, 462s, 372w, 322s, 274w, 226m, 190m cm⁻¹.

Analog: Hexamethyl-6,6-bis(dimethylamido)-2,4-disila-1,5-diaza-3-oxa-6titana-cyclohexan (III). Ausbeute 66%. IR: 2962s, 2900s, 2856vs, 2847vs, 2817s, 2788s, 2771vs, 1468(sh), 1442m, 1417s, 1254vs, 1157s, 1108s, 1056m, 1020vs, 951vs, 850vs, 829(sh), 802vs, 788vs, 763s, 678w, 650vw, 593s, 563m, 537s, 468m, 409w, 378s, 322m, 284w. Raman: 2938w, 2895w, 2875s, 2843m, 2817m, 2765m, 1445m, 1421m, 1369m, 1357m, 1254w, 1189s, 1154w, 958vsp, 946m, 800wp, 690wp, 676w, 581s, 558mp, 530w, 468vs, 407mp, 378vw, 320vsp, 215sp, 195m cm⁻¹.

Analog: Hexamethyl-6,6-bis(diäthylamido)-2,4-disila-1,5-diaza-3-oxa-6titana-cyclohexan (IV). Ausbeute 58%. IR: 2968vs, 2931s, 2869vs, 2839s, 2788s, 1460m, 1446m, 1416w, 1405vw, 1365s, 1350m, 1332w, 1252vs, 1187s, 1152s, 1092s, 1062s, 1020vs, 945m, 910w, 880s, 849vs, 798s, 786vs, 678w, 610s, 533s, 477w-m, 385s, 316vw. Raman: 2938w, 2895w, 2875s, 2843m, 2817m, 2765m, 1445m, 1421m, 1369m, 1357m, 1254w, 1189s, 1154w, 1096m, 1069m, 1035m, 1013vs, 890vs, 807m, 697m, 682m, 606s, 570w-m, 532vw, 468vs, 375w, 322vs, 219s, 190m cm⁻¹.

Heptamethyl-6,6-dichlor-2,4-disila-1,3,5-triaza-6-titana-cyclohexan (V)

Zu 16.2 g (0.079 Mol) MeN(SiMe₂NHMe)₂, gelöst in 200 ml Petroläther, tropft man 73 g (0.172 Mol) 15%ig. BuLi in Hexan und erwärmt anschliessend kurze Zeit. Das Reaktionsgemisch wird dann mit 300 ml Petroläther verdünnt. Nach Zutropfen von 15 g (0.079 Mol) TiCl₄ in 200 ml Petroläther und erneutem Erwärmen wird das gebildete LiCl abfiltriert. Aus der durch Abziehen des Lösungsmittels im Vakuum auf 80 ml eingeengten Lösung kristallisieren beim Iangsamen Abkühlen auf -10° C insgesamt 12.7 g (V) (50% Ausbeute) in orangegelben Kristallen aus. IR: 1258vs, 1172w, 1155m, 1118s, 1047vs, 935m, 879s, 858vs, 829vs, 798vs, 768m, 728s, 683m, 654m, 553s, 487m, 442(sh), 436m-s, 404s, 376s, 338s, 227vw. Raman (unvollständig): 788m, 680w, 650w, 550m, 485s, 436w, 335m, 234m, 115m cm⁻¹.

Analog: Heptamethyl-6,6-dibrom-2,4-disila-1,3,5-triaza-6-titana-cyclohexan (VI). Ausbeute 54%. IR: 1258vs, 1170w, 1153w, 1112m, 1041s, 938m-s, 885s, 854vs, 826s, 798s, 725s, 687w, 653m, 549m-s, 484w, 391s, 355m, 330s, 284s-(br). Raman (unvollständig): 784m, 546m, 482s, 410w, 383w, 350w, 281m, 232m, 180m cm⁻¹.

Analog: Hexamethyl-6,6-dibrom-2,4-disila-1,5-diaza-3-oxa-6-titana-cyclohexan (VII). Ausbeute 41%. IR: 1260vs, 1154m, 1057s, 1036vs, 950w, 852vs, 825vs, 800vs, 760m, 627vw, 587m, 518w, 466w, 394vs, 344w, 281s, 255vw. Raman: 2960w, 2895m, 1461w, 1416w, 1261w, 1151w, 1028m, 850s, 828s, 794w, 760vw, 706w, 508w, 461s, 412w, 386w, 360w, 280vs, 199vs, 180s cm⁻¹. Analog: Hexamethyl-6,6-dibrom-2,4-disila-1,5-diaza-6-titana-cyclohexan (VIII). Ausbeute 42%. IR: 1262vs, 1153s, 1055vs, 1028s, 915w, 846vs, 800s, 770m, 741m, 688m, 657w, 594w, 506w, 478vw, 383vs. 314vw, 278s, 254w, 230vw. Raman: 2958w, 2899m, 2872m, 2794w, 1460w, 1435vw, 1415w, 1256w 1153m, 1023w, 988w, 837vs, 690w, 594w, 472vs, 380m, 309w, 274s, 254m, 198s, 163s cm⁻¹.

Hexamethyl-5,5-dibrom-2,3-disila-1,4-diaza-5-titana-cyclopentan (IX)

3.7 g (10 mMol) TiBr₄, gelöst in 50 ml Petroläther, werden langsam zu einer Lösung von 4.0 g (10 mMol) des Ti-Spirans A1 in 100 ml Petroläther getropft. Nach kurzem Erwärmen des Reaktionsgemisches wird durch Einengen der Lösung auf ca. 50 ml und Kristallisation bei -20° C aufgearbeitet, Ausbeute 84%. IR: 1247s, 1148s. 1075vs, 950w(br), 665m, 834s, 798vs, 729s, 535w, 413w, 379vs, 279m. Raman: 1251w, 1142w, 1069s, 816s, 786vs, 729w, 691w, 677m. 529m, 414vs, 280vs, 202m, 175vs cm⁻¹

Hexamethyl-6,6-difluor-2,4-disila-1,5-diaza-6-titana-cyclohexan (X)

Zu einer Suspension von 1.5 g TiF_4 (12 mMol) in 15 ml Petroläther wird eine Lösung von 5.1 g (12 mMol) des Ti-Spirans A1 in 30 ml Petroläther getropft.

TABELLE 6

ANALYSEN DER TITAN(IV)-AMIDE I-X

	Summenformel	Mol-gew.	Analysen	(Gef. (ber.)) (.%)		
		(Ger.))	с	н	N	Ti	Hal.
I	C ₁₁ H ₃₃ N ₅ Si ₂ Ti	(339.49)	38.6 (38.92)	9.6 (9.80)	20.4 (20.63)	13.9 (14.11)	
II	C ₁₅ H ₄₁ N ₅ Si ₂ Ti	(395.60)	45.2 (45.54)	10.2 (10.45)	17.5 (17.70)	11.9 (12.11)	
111	C ₁₀ H ₃₀ N ₄ OSi ₂ Ti	(326.45)	36.8 (36.79)	9.2 (9.26)	17.1 (17.16)	14.7 (14.67)	
IV	C ₁₄ H ₃₈ N ₄ OSi ₂ Ti	(382.56)	43.4 (43.96)	10.0 (10.01)	14.4 (14.65)	12.4 (12.52)	
v	C7H21Cl2N3Si2Ti	334 (322.24)	26.2 (26.09)	6.5 (6.57)	13.0 (13.04)	14.7 (14.86)	22.0 ^a (22.00)
VI	C7H21Br2N3Si2Ti	416 (411.15)	20.7 (20.45)	5.3 (5.15)	10.1 (10.22)	11.6 (11.65)	38.5 ^b (38.87)
VII	C ₆ H ₁₈ Br ₂ N ₂ OSi ₂ Ti	403 (398.10)	18.3 (18.10)	4.5 (4.56)	7.0 (7.04)	12.1 (12.03)	40.1 ^b (40.14)
vm	C7H20Br2N2Si2Ti	406 (396.13)	21.2 (21.22)	5.2 (5.09)	7.0 (7.07)	12.0 (12.09)	40.2 ^b (40.34)
IX	C ₆ H ₁₈ Br ₂ N ₂ Si ₂ Ti	397 (382.10)	18.7 (18.86)	4.9 (4.75)	7.3 (7.35)	12.4 (12.54)	41.5 ^b (41.82)
х	C7H20F2N2Si2Ti	~2200 (274.32)	30.2 (30.65)	7.1 (7.35)	10.3 (10.21)	17.5 (17.46)	14.0 ^c (13.85)

^a CL ^b Br. ^c F.

Unter ständigem Rühren wird so lange unter Rückfluss gekocht, bis die unlösliche, amorphe Phase eine homogene Konsistenz angenommen hat. Unter trokener N₂-Atmosphäre werden 2.4 g X als gelbes Pulver abfiltriert. 36% Ausbeute, bezogen auf TiF₄. IR: 1247s, 1154m, 1052vs, 988w, 861vs, 838vs, 797vs, 766s, 738s, 683m-w, 660w, 625m, 611m-s, 521s(br), 483s, 426w, 390m, 340m, 289w, 223vw, 211vw. Raman: 2952w, 2898m, 2868w, 2790w, 1450w, 1414m, 1248w, 1150w, 1050s, 990w, 880vs, 820vs, 751w, 736w, 682m, 630w, 602m, 498vvs, 460m, 404w, 372m, 360m, 298m, 279m, 250m, 235m, 207s, 180s cm⁻¹.

Analysen und Spektren s. Tab. 6 und Ref. [3].

Dank

Wir danken dem Fonds der Chemischen Industrie für ein Stipendium an K.W. und für Sachmittel, der Deutschen Forschungsgemeinschaft für die Bereitstellung der Spektrographen sowie finanzielle Unterstützung.

Literatur

- 1 H. Bürger und C. Kluess, J. Organometal. Chem., 108 (1976) 69.
- 2 U. Dämmgen und H. Bürger, Z. Anorg. Allgem. Chem., im Druck.
- 3 H. Bürger und K. Wiegel, Z. Anorg. Allgem. Chem., 419 (1976) 157.
- 4 U. Wannagat, Chem. -Ztg., 97 (1973) 105.
- 5 H. Bürger, K. Wiegel, U. Thewalt und D. Schomburg, J. Organo.netal. Chem., 87 (1975) 301.
- 6 M. Schlingmann und U. Wannagat, Z. Anorg. Allgem. Chem., 419 (1976) 115.
- 7 K. Wiegel und H. Bürger, Z. Anorg. Allgem. Chem., im Druck.
- 8 U. Wannagat und R. Braun, Monatsh. Chem., 100 (1969) 1910.
- 9 U. Wannagat und F. Rabet, Inorg. Nucl. Chem. Lett., 6 (1970) 155.
- 10 H. Bürger und H.J. Neese, Z. Anorg. Allgem. Chem., 370 (1969) 275.
- 11 U. Wannagat, M. Schlingmann und H. Autzen, Chem. -Ztg., 98 (1974) 372.
- 12 H. Bürger und K. Wiegel, Z. Anorg. Allgem. Chem., 398 (1973) 257.
- 13 W.S. Sheldrick, J. Fluorine Chem., 4 (1974) 415.
- 14 U. Wannagat und D. Schmid, Chem.-Ztg., 97 (1973) 448.
- 15 H. Bürger, H. Stammreich und T.Th. Sans, Monatsh. Chem., 97 (1966) 1276.
- 16 H. Bürger, M. Schlingmann und G. Pawelke, Z. Anorg. Allgem. Chem., 419 (1976) 121.
- 17 L.E. Alexander und I.R. Beattie, J. Chem. Soc. Dalton, (1972) 1745.
- 18 H.J. Wismar und U. Wannagat, Monatsh. Chem., 104 (1973) 1465.